Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 71, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373982

RESUMEN

Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Moringa oleifera , Moringa oleifera/metabolismo , Polifenoles/farmacología , Antiinfecciosos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
2.
Med Res Rev ; 43(5): 1374-1410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36939049

RESUMEN

Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.


Asunto(s)
Ginsenósidos , Panax , Humanos , Ginsenósidos/farmacología , Panax/química , Extractos Vegetales/química
3.
Carbohydr Polym ; 267: 118195, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119162

RESUMEN

The objective of the present study is synthesis of glycol chitosan coated selenium nanoparticles (GC-Se NPs) and evaluation of oxidative stress and ginsenoside accumulation in P. ginseng C. A. Meyer. We synthesized (Se NPs and GC-Se NPs) and characterized using various spectroscopic analyses. The highest concentration (20 mg L-1) of GC-Se NPs induced moderate ROS (O2- and H2O2) accumulation and upregulation of PgSOD and PgCAT showing good biocompatibility and less toxicity at the highest concentration. Furthermore, ginsenoside biosynthetic pathway genes (PgHMGR, PgSS, PgSE, PgDDS) also showed significant upregulation upon 20 mg L-1 GC-Se NPs treatment. At 20 mg L-1 GC-Se NPs treatment, ginsenoside accumulated upto 217.47 mg/mL and 169.86 mg/mL mainly due to the increased proportion of Rb1 and Re ginsenosides. Altogether, our results suggested that ecofriendly conjugation of GC with Se NPs could be used as a bio fortifier to enhance the ginsenoside profile and to increase the quality of ginseng roots.


Asunto(s)
Quitosano/farmacología , Ginsenósidos/metabolismo , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Panax/metabolismo , Selenio/farmacología , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Quitosano/química , Genes de Plantas/efectos de los fármacos , Panax/química , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Regulación hacia Arriba/efectos de los fármacos
4.
Biotechnol Adv ; 37(7): 107394, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078628

RESUMEN

Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra-/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.


Asunto(s)
Glicosiltransferasas/metabolismo , Glicosilación , Panax , Filogenia , Triterpenos , Uridina Difosfato
5.
Int J Biol Macromol ; 121: 796-805, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30336242

RESUMEN

Cytochrome P450 genes as the one of the largest superfamily genes mediate a wide range of plant biochemical pathways. In this study, a full-length cytochrome P450 monooxygenase (CYP736B) cDNA was isolated and characterized from Panax ginseng. It was revealed that the deduced amino acid of PgCYP736B shares a high degree of sequence homology with CYP736A12 encoded by P. ginseng. Expression of PgCYP736B was differentially induced not only during a Pseudomonas syringae infection (7.7-fold) and wounding (47.3-fold) but also after exposure to salt (7.4-fold), cold (8.3-fold), and drought stress (3.24-fold). The gene transcription was highly affected by methyl jasmonate (476-fold) in the ginseng, suggesting that PgCYP736B was elicitor-responsive. Furthermore, we overexpressed the PgCYP736B gene in Arabidopsis and found that PgCYP736B is a transmembrane protein. Overexpression of PgCYP736B in Arabidopsis conferred enhanced resistance to salt stress via decreased H2O2 accumulation, increased carotenoid levels, and through abscisic acid biosynthesis gene expression. Our results suggest that the induction of ginsenoside biosynthetic pathway genes along with PgCYP736B by an exogenous supply of 10-100 µM of squalene most likely affects the metabolite profile of ginsenoside triterpenoid. Overall, our findings indicate that PgCYP736B protects ginseng from salt stress and may contribute to triterpenoid biosynthesis.


Asunto(s)
Ácido Abscísico/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Panax/genética , Tolerancia a la Sal/genética , Escualeno/farmacología , Activación Transcripcional/efectos de los fármacos , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
6.
J Exp Bot ; 67(21): 6007-6019, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811076

RESUMEN

Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production.


Asunto(s)
Ciclopentanos/metabolismo , Ginsenósidos/biosíntesis , Lipooxigenasa/metabolismo , Oxilipinas/metabolismo , Panax/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Ginsenósidos/metabolismo , Glucosiltransferasas/metabolismo , Lipooxigenasa/genética , Redes y Vías Metabólicas , Panax/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Escualeno/metabolismo , Escualeno-Monooxigenasa/metabolismo
7.
Appl Microbiol Biotechnol ; 99(17): 6987-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26194557

RESUMEN

Ginseng is one of the most important plants in oriental medicine. The pharmacological effects of this medicinal herb are mostly correlated to the major bioactive triterpene saponin, called ginsenoside. Due to the long cultivation period of ginseng and increased ginsenoside level in aged root, we need to develop strategies to increase ginseng productivity in cell and tissue culture in a faster way. Elicitation is already considered to improve the yield of this valuable secondary metabolite; especially, different types, timings, and durations of elicitation could affect the ginsenoside production and heterogeneity. Activation of ginsenoside biosynthetic genes and ginsenoside accumulation mediated by elicitor-induced signaling molecules would be helpful for commercial production of individual ginsenosides. Jasmonic acid is the well-known signaling molecule which mainly involved in ginsenoside accumulation. Ca(2+) spiking and reactive oxygen species, nitric oxide, and ethylene production are other messengers which mediate production of ginsenoside. This review highlights the elicitation strategies for production of the ginsenoside based on the principle of putative signal transduction pathways.


Asunto(s)
Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxilipinas/metabolismo , Panax/química , Panax/efectos de los fármacos , Saponinas/metabolismo , Transducción de Señal , Activación Transcripcional , Calcio/metabolismo , Humanos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/aislamiento & purificación
8.
Gene ; 536(1): 186-92, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23978613

RESUMEN

Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively.


Asunto(s)
Glicosiltransferasas/clasificación , Glicosiltransferasas/genética , Panax/enzimología , Panax/genética , Secuencia de Aminoácidos , Análisis por Conglomerados , Secuencia Conservada , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glicosiltransferasas/química , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Estructura Terciaria de Proteína/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
9.
Bull Environ Contam Toxicol ; 90(2): 194-202, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23232757

RESUMEN

The differential transcript patterns of five antioxidant genes, four genes related to the ginsenoside pathway and five P450 genes related to defense mechanism were investigated in in vitro adventitious roots of Panax ginseng after exposure to two different concentrations of heavy metals for 7 days. PgSOD-1 and PgCAT transcription increased in a dose-dependent manner during the exposure to CuCl(2), NiCl(2), and CdCl(2), while all other tested scavenging enzymes didn't show significant increase during heavy metal exposure. Conversely, the mRNA transcripts of PgSQE, PgDDS were highly responsive to CuCl(2) compared to NiCl(2) exposure. However, the transcript profile of Pgß-AS was highly induced upon NiCl(2) treatment compared to CuCl(2) and CdCl(2) exposure. The expressions of PgCYP716A42, PgCYP71A50U, and PgCYP82C22 were regulated in similar manners, and all showed the highest transcript profile at 100 µM of CuCl(2), CdCl(2), and NiCl(2) except PgCYP71D184, which showed the highest transcript level when subjected to 10 µM CuCl(2) and NiCl(2). Thus it may suggest that in P. ginseng heavy metal interaction on cell membrane induced expression of various defense related genes via jasmonic acid pathway and also possesses cross talk networks with other defense related pathways.


Asunto(s)
Antioxidantes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ginsenósidos/biosíntesis , Metales Pesados/toxicidad , Panax/efectos de los fármacos , ARN Mensajero/genética , Secuencia de Bases , Cartilla de ADN , Etiquetas de Secuencia Expresada , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA